Использование паруса на судне. Действия парусом, управление парусным судном, повороты парусом. Основные сведения из теории паруса Поперечное распределение веса при попутном ветре

Воздействие ветра на корабль определяется его на­правлением и силой, формой и размерами площади па­русности корабля, расположением центра парусности, значениями осадки, крена и дифферента.

Действие ветра в пределах курсовых углов 0-110° вызывает потерю скорости, а при больших курсовых уг­лах и силе ветра не свыше 3-4 баллов - некоторое ее приращение.

Действие ветра в пределах 30-120° сопровождается дрейфом и ветровым креном.

На движущийся корабль действует относительный (кажущийся) ветер, который связан с истинным следую­щими отношениями (рис. 7.1)(2):

Где Vи - скорость истинного ветра, м/с;

VK-скорость кажущегося ветра, м/с;

V0 - скорость хода корабля, м/с;

βо-угол дрейфа корабля, град.

Yk - угол кажущегося ветра;

Yи-угол истинного ветра.

Удельное давление ветра на корабль в кгс/м&sub2; рассчи­тывается по формуле

Где W - скорость ветра, м/с.


Рис. 7.1. Зависимость истинного и кажущегося ветра


Рис. 7.2. Действие кренящего момента

Так, при урагане, когда скорость ветра достигает 40-50 м/с, величина ветровой нагрузки достигает 130- 200 кгс/м2.

Полное давление ветра на корабль определяется из выражения P = pΩ, где &Omrga; - площадь парусности корабля.

Величина кренящего момента Мкр (рис. 7.2) в кгс м для случая установившегося движения и действия силы давления ветра Р, перпендикулярной ДП корабля, опре­деляется из выражения

Где zn - ордината центра парусности, м;

Т - средняя осадка корабля, м.

Волнение моря оказывает наиболее существенное вли­яние на корабль. Оно сопровождается действием на кор­пус значительных динамических нагрузок и качкой ко­рабля. При плавании на волнении увеличивается сопро­тивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.


Рис. 7.3. Элементы волн

В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и умень­шается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами (рис. 7.3):

Высота волны h - расстояние по вертикали от вер­шины до подошвы волны;

Длина волны λ - расстояние по горизонтали между двумя соседними гребнями или подошвами;

Период волны t - промежуток времени, в течение которого волна проходит расстояние, равное своей дли­не(3);

Скорость волны С - расстояние, проходимое вол­ной в единицу времени.

По происхождению волны подразделяются на ветро­вые, приливо-отливные, анемобарические, волны земле­трясения (цунами) и корабельные. Наиболее распространенными являются ветровые волны. Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волне­ние - развивающееся, оно находится под непосредствен­ным воздействием ветра в отличие от зыби, представляю­щей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе. Профиль ветровой волны не симметричен. Ее подветрен­ный склон круче, чем наветренный. На вершинах ветро­вых волн образуются гребни, верхушки которых под дей­ствием ветра заваливаются, образуя пену (барашки), а при сильном ветре срываются. Направление ветра и на­правление ветровых волн в открытом море, как правило, совпадают или разнятся на 30-40°. Размеры ветровых волн зависят от скорости ветра и продолжительности его воздействия, длины пути ветро­вых потоков над водной поверхностью и глубины данного района (табл. 7.1).

ТАБЛИЦА 7.1. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ЭЛЕМЕНТОВ ВОЛН ДЛЯ ГЛУБОКОГО МОРЯ (Н/Λ > 1/2)

Наиболее интенсивный рост волны наблюдается при отношении C/W < 0,4-0,5. Дальнейшее увеличение этого отношения сопровождается уменьшением роста волн. По­этому волны опасны не в момент наибольшего ветра, а при последующем его ослаблении.

Для приближенных расчетов средней высоты волн ус­тановившегося океанского волнения пользуются форму­лами:

При ветре до 5 баллов

При ветре свыше 5 баллов

Где Б - сила ветра в баллах по шкале Бофорта (§ 23.3).

В условиях развитого волнения имеет место интерфе­ренция отдельных волн (до 2% общего количества и бо­лее), которые достигают максимального развития и пре­вышают среднюю высоту волн в два-три раза. Такие вол­ны особенно опасны.

Наложение одной волновой системы на другую наибо­лее интенсивно происходит при изменении направления ветра, частом чередовании штормовых ветров и перед фронтом тропических циклонов(4).

Энергия волн развитого волнения исключительно вели­ка. Для корабля, лежащего в дрейфе, динамическое воз­действие волн может быть определено из выражения р=0,1 τ² где τ - истинный период волны, с.

Так, для периодов волн около 6-10 с величина Р мо­жет достигать внушительных значений (3,6-10 т/м²).

При движении корабля курсом против волны динами­ческое воздействие волн будет возрастать пропорциональ­но квадрату скорости корабля, выраженной в метрах в се­кунду.

Длина волны в метрах, скорость в метрах в секунду и период в секундах связаны между собой следующими соотношениями:

Практически движущийся корабль встречает не истин­ный, а относительный (кажущийся) период волны τ", ко­торый определяется из выражения

Где а - курсовой угол фронта гребня волны, измеренный по любому борту.

Плюс относится к случаю движения против волны, минус - по волне.

При изменении курса корабль располагается относи­тельно приведенной длины волны λ":

Характер качки корабля имеет сложную зависимость между элементами волн (h, λ, τ и С) и элементами ко­рабля (L, D, Т1,2 и δ).

Безопасность корабля с точки зрения остойчивости определяется не только его конструкцией и распределе­нием грузов, но и курсом, а также скоростью. В условиях развитого волнения непрерывно меняется форма дейст­вующей ватерлинии. Соответственно изменяются форма погруженной части корпуса, плечи остойчивости формы и восстанавливающие моменты.

Пребывание корабля на подошве волны сопровожда­ется увеличением восстанавливающих моментов. Пребыва­ние корабля (особенно длительное) на гребне волны опасно и может привести к опрокидыванию. Наиболее опасна резонансная качка, при которой период собствен­ных колебаний корабля T1,2 равен видимому (наблюдае­мому) периоду волны?" Характер бортовой резонансной качки показан на рис. 7.4. Как следует из рисунка, явление резонанса наблюдается при отношении 0,7 < T1 /τ" < 1,3

Особенно опасна резонансная качка при положении корабля лагом к волне.
При следовании корабля курсом против волны зна­чительно возрастают потери в скорости, происходят ого­ление оконечностей и резкие броски оборотов. Удары волн в днище носовой оконечности (явление «слемминга») могут привести к деформации корпуса и срыву от­дельных механизмов и устройств с фундаментов.

При следовании по волне корабль в меньшей степени подвержен ударам волн. Однако следование его по вол­не со скоростью, близкой к скорости волны VK = (0,6--1,4) С (корабль «оседлал» волну), приводит к резкой потере поперечной остойчивости в связи с изменением формы и площади действующей ватерлинии, а это ведет к возникновению гироскопического момента, действую­щего в плоскости ватерлинии и значительно ухудшаю­щего управляемость корабля.


Рис. 7.4. Резонансная качка

Наиболее опасно плавание малого корабля на попутном волнении, когда λ=L ко­рабля, а VK=C.

Универсальная диаграмма качки Ю.В. Ремеза

Универсальная диаграмма качки определяет зависи­мость наблюдаемых элементов волн от изменения элемен­тов движения корабля.

Диаграмма рассчитана по формуле

Где V - скорость корабля, уз.

Диаграмма определяет зависимость между X и V sin a при различных значениях т". Она построена относительно преобладающей системы волн, которая может быть выде­лена на любом волнении и оказывает наиболее сущест­венное влияние на качку корабля (§ 23.4). Уни­версальная диаграмма может быть использована только в районах с достаточно большими глубинами (более 0,4Х волны).

Применение универсальной диаграммы качки позво­ляет решить следующие основные задачи:
- определить курс и скорость, при которых корабль может попасть в положение резонансной качки (килевой и бортовой);

Определить длину волны в районе плавания;

Определить сектора курсов и диапазоны скоростей, при которых корабль будет испытывать сильную качку, близкую к резонансной;

Определить курсы и скорости, при которых корабль будет находиться в состоянии наиболее опасной пони­женной поперечной остойчивости;

Определить курсы и скорости, при которых ко­рабль будет испытывать явление «слеминга».

(1) Дальнейшее усиление ветра сопровождается ветровым волне­нием, снижающим скорость корабля.
(2) Координаты истинного ветра связаны с землей, а кажуще­гося с кораблем.
(3) Практически движение частиц воды ветрового волнения про­исходит по орбитам, близким по форме к окружности или эллипсу, Перемещается лишь профиль волны.
(4) Характер волнообразования и его связь с элементами ветра подробно рассматриваются в курсе океанографии.

В качестве вступления. Данная статья появилась на свет с подачи и при моральной поддержке моих давних коллег по общению на форуме сайта «Верфь на столе». Целью её было освещение в ограниченных рамках сайта обширного раздела мореходной практики связанной с изменением парусности судна соразмерно силе и направлению ветра. Именно поэтому описывается лишь процесс взятия на рифы и уборки парусов. Публикация рассчитана на людей, знакомых с основными понятиями и терминами из практики вооружения парусных судов. Дабы не повторяться, намеренно упускаю и сокращаю все, что уже было опубликовано на этом сайте и связанно с этой темой, а попытаюсь обобщить то, что на мой взгляд может показаться интересным пытливому читателю в трудах, опубликованных большей частью в России во второй половине XIX века.

Итак, сначала о ветре. Да, да о нем, ибо, не вдаваясь в теорию и подробные расчеты, именно он и есть суть движущая сила парусного судна. В эпоху расцвета парусного кораблестроения моряки характеризовали силу ветра в зависимости от парусов, которые можно было нести, идя курсом бейдевинд. Это объяснялось тем, что при курсе бейдевинд суда вынуждены носить меньшую парусность. Основные причины заключаются в том, что, во-первых, боковое, наиболее опасное с точки зрения потери рангоута воздействие парусов через обрасопленные реи на мачты и стеньги, поддерживаемые вантами и фордунами более сзади, нежели с боков, оказывается наибольшим, чем при иных курсах; во-вторых, боковая остойчивость корабля существенно меньше продольной; и, в-третьих, сила ветра, воздействующая на корабль равно как и другой движущийся объект, зависит от направления его движения, то есть в бейдевинд она увеличивается, а при попутном ветре уменьшается. Поэтому при одном и том же ветре лежа бейдевинд необходимо было брать у марселей рифы, тогда как на фордевинд можно было нести и брамсели. Исходя из вышесказанного, о ветре говорили бом-брамсельный, брамсельный, марсельный, риф-марсельный и ундер-зейль, когда лежа бейдевинд можно поднять бом-брамсели, или идти под брамселями, или только под марселями или под зарифленными марселями, или нести только нижние паруса. Для более точной характеристики ветра говорили, например, ветер брамсельный тихий, марсельный крепкий, риф-марсельный с порывами и т.д. Под штилем подразумевалось полное безветрие, а под штормом – ветер, при котором держались под глухо зарифленным грот-марселем или только под одними триселями. Позднее перешли к более точному определению силы ветра в баллах по системе Бофорта (табл. 1).

Вычисленная скорость в секунду времени Давление в русских фунтах на фут Баллы, означающие степень силы ветра Название ветров по Бофорту Название ветров по системе Чапмана
10,4 0,28 1 Light air
Весьма слабый
20,8 1,11 2 Light wind
Слабый
31,2 2,49 3 Light breeze
41,6 4,43 4 Moderate breeze
Умеренный
Бом-брамсельный
51,9 6,92 5 Fresch breeze
свежий
Брамсельный
62,3 9,97 6 Strong breeze
Весьма свежий
Марсельный
72,7 13,57 7 Moderate gale
Сильный
Риф-марсельный
83,1 17,72 8 Fresch gale
Весьма сильный
Ундер-зейль
93,5 22,43 9 Strong gale
Крепкий
Полу-шторм
103,9 27,69 10 Heavy gale
Весьма крепкий
Полный шторм
- - 11 Storm
Буря
124,7 39,88 12 Hurricane
Ураган

Соответственно постепенно увеличивающейся силе ветра постепенно уменьшали парусность судна обычно в следующем порядке:

    Убирали брам-стаксели и бом-брамсели с бом-кливером;

    Крепили брамсели или оставляя последние, брали у марселей один риф;

    Брали у марселей второй риф, причем обычно крепили брамсели;

    Брали у марселей третий риф и заменяли кливер фор-стеньги стакселем, при этом кливер старались удерживать как можно дольше;

    Крепили крюйсель, брали последний риф у фор- и грот-марселей, брали один риф у бизани;

    Крепили фор-марсель и брали последний риф у бизани (или ставили штормовую бизань), фор-стеньги стаксель заменяли фока-стакселем.

Нижние паруса рифились обычно в следующей последовательности: вместе с четвертым рифом у марселей брали первый риф у грота, затем второй риф у грота и первый у фока, затем второй у фока и крепили грот или заменяли его грот-триселем, и, в крайнем случае, когда сила ветра и волнения лишали возможности иметь ход и вынуждали держаться под грот-марселем, крепили фок.

При попутных ветрах порядок постепенной уборки парусов предполагался аналогичным вышеизложенному с той лишь разницей, что для уменьшения рыскливости в бакштаг убирали бизань и крепили крюйсель во время взятия третьего рифа у других марселей.

Таким образом, штормовую парусность в бейдевинд на судах с прямым парусным вооружением составляли обычно глухо зарифленный грот-марсель (о парусе говорили что он глухо зарифлен, если у него были взяты все четыре рифа), фока стаксель и зарифленная бизань. При фордевинде это обычно были фор-стеньги стаксель, зарифленные грот-марсель и фок. Грот-марсель необходим как парус, у которого поднимающиеся сзади волны не отнимают много ветра, фок переносит вперед общий центр парусности, а фор-стеньги стаксель для компенсации случайного сильного рыскания.
В качестве наглядного примера привожу литографию Т. Г. Даттона (T G Dutton). На ней (Рис.1) изображен барк Constance, идущий бакштаг при риф-марсельном ветре под тремя парусами: фор-стеньги стакселем, фоком и грот-марселем, взятым на два рифа; команда в это время убирает фор-марсель и грот. При этом соответствующие лисель-спирты приподняты над реями, чтобы освободить место для укладки парусов.

Рис. 1. Барк Constance, идущий бакштаг.

Нельзя не упомянуть, что количество устанавливаемых парусов зависит не только от силы ветра и его направления относительно курса судна, но и от величины волнения, личного опыта капитана, характеристик и свойств конкретного корабля и некоторых других факторов. Немалую роль играет своевременность принятия решения об изменении парусности при изменении силы ветра: преждевременное уменьшение парусности ведет к потере хода, а передержка может сделать уборку парусов и взятие рифов делом трудным и опасным для марсовых.

Для того, чтобы иметь возможность брать паруса на рифы, в процессе отакелаживания в паруса продевают риф-леера, риф-сезни и риф-штерты; ввязывают кренгельсы и шпрюйты, пришивают лапки и обносные сезни, продевают нок-бензеля и штык-болты. Более подробное рассмотрение этого вопроса, несомненно, может представить интерес с точки зрения изготовления моделей кораблей.

Риф-сезни обычно плелись из пяти шкимушек. Их вешали через шест и из длинных концов сплетали плетенку длиною, достаточной для образования двойного очка, которое было необходимо для того, чтобы продетые риф-сезни не могли проскочить сквозь люверс паруса (Рис. 2). Затем сплетенную часть вешали серединой через шест, делали одним концом оборот вокруг шеста для образования двойного очка, соединяли оба конца и продолжали плести сезень из шкимушек обоих половин. (Рис. 3). Концы сезней обвивали парусной ниткой и крыжевали, прошивая насквозь. Длина риф-сезней должна соответствовать толщине рея, а так как риф вязали на рее как можно выше, задние половины сезней обычно делались длиннее передних, исключая сезней четвертого рифа, у которых наоборот передние концы делались длиннее задних, по причине того, что штык-болт четвертого рифа брался, как правило, сзади рея и сам риф обтягивался под низ рея. В процессе отакелаживания риф-сезни продевали, сидя на полу, два человека – по одному с каждой стороны растянутого паруса. Каждый, взяв одну половину риф-сезня, пропускал ее конец в люверс, в то же время принимал от своего коллеги другой конец сезня и пропускал его в очко своей половины. Далее на конец сезня надевался обыкновенный шкив, люди брались каждый за свой конец руками, ногами упирались в шкивы и таким образом плотно обтягивали сезень, надежно закрепляя его в люверсе. При взятии рифов парусину между реем и соответствующим риф-бантом закатывали и получившийся рулон обвязывали риф-сезнями прямым (Рис. 4) или рифовым узлом (Рис. 5).

Рис. 2 - 5. Риф-сезни.

Во второй половине XIX века через люверсы в риф-банте стали проводить один или два риф-леера одним из показанных ниже способов (Рис. 6). Чтобы полуштыки риф-лееров не могли ослабевать, на них клали бензеля из шкимушгара.

Рис. 6 и 7. Проводка риф-леера.

Риф-сезни с клевантами укреплялись на прутковом леере, служащим для привязки паруса, или на специальном леере, укрепленном позади парусного леера, либо обносились вокруг рея (Рис. 8) (на марса-реях их крепили парами – один для 1-го и 3-го рифа, второй для 2-го и 4-го). При взятии такого рифа парусину подбирали до соответствующего риф-банта, конец риф-сезеня пропускали в петлю риф-леера и закрывали на клевант (Рис. 9).

Рис. 8 и 9. Риф-сезни.

При взятии такого рифа мякоть не трогали, а оставляли висеть между парусом и реем.

Риф-сезни триселей и бизани вырубались из белого троса и вшивались в парус несколько иначе. Вот один из способов: делали в парусе дыру в месте продевания риф-сезеня, продевали его и равняли концы по обе стороны паруса. Затем раскручивали сезень вплотную у паруса, чтобы пряди развернулись и образовали калышки петлями. Пришивали эти петли к парусу, а немного ниже простегивали обе части сезня и паруса насквозь. Концы сезней обвивали парусной ниткой и тоже простегивали насквозь для прочности.

Риф-штерты, их так же называли змейками, служили для удобства притягивания паруса к рею при взятии рифов. Они представляли собой тонкую веревку, один конец которой приплесневывался к люверсу верхней шкаторины; другой конец спускался по передней стороне паруса и прихватывался к шейкам соответствующих риф-сезней вплоть до четвертого рифа (Рис. 7). У нижних парусов делали от 6 до 8 змеек, у марселей по 6, (на малых судах по 4), у крюйселей по 4.

Думаю, что многие из нас воспользовались бы шансом погрузиться в морскую бездну на каком-нибудь подводном аппарате, но все же, большинство бы предпочло морское путешествие на паруснике. Когда еще не было ни самолетов, ни поездов были лишь только парусники. Без них мир был, не стал таким.

Парусники с прямыми парусами привезли европейцев в Америку. Их устойчивые палубы и вместительные трюмы доставили людей и припасы для строительства Нового мира. Но и у этих старинных кораблей были свои ограничения. Они шли медленно и практически в одном направлении по ветру. С тех пор многое изменилось. Сегодня используют совсем другие принципы управления силой ветра и волн. Так что если захотите прокатиться на современном , придется подучить физику.

Современный парусный спорт это не просто движение по ветру, это нечто воздействующее на парус, и заставляющее его лететь подобно крылу. И это невидимое «нечто» называется подъемной силой, которую ученые называют боковой силой.

Внимательный наблюдатель не мог не заметить, что не зависимо от того куда дует ветер парусная яхта всегда движется туда, куда нужно капитану - даже когда ветер встречный. В чем же секрет такого удивительного сочетания упрямства и послушания.

Многие даже не догадываются, что парус это крыло, и принцип работы крыла и паруса один. В его основе лежит подъемная сила, только если подъемная сила крыла летательного аппарата, используя встречный ветер, толкает самолет вверх, то вертикально расположенный парус направляет парусник вперед. Чтобы объяснить это с научной точки зрения необходимо вернуться к истокам - как работает парус.

Посмотрите, на смоделированный процесс, который показывает, как воздух действует на плоскость паруса. Здесь можно видеть, что потоки воздуха под моделью, имеющие больший изгиб, изгибаются, чтобы обойти ее. При этом потоку приходиться немного ускориться. В результате возникает область низкого давления - это и генерирует подъемную силу. Низкое давление на нижней стороне тянет парус к низу.

Другими словами область с высоким давлением пытается передвинуться к области низкого давления, оказывая давления на парус. Возникает разница давлений, что порождает подъемную силу. Благодаря форме паруса, с внутренней наветренной стороны, скорость ветра меньше, чем с подветренной стороны. На внешней стороне образуется разрежение. В парус в буквальном смысле всасывается воздух, который и толкает парусную яхту вперед.

На самом деле этот принцип довольно прост для понимания, достаточно присмотреться на любое парусное судно. Фокус здесь в том, что парус как бы ни был расположен, передает судну энергию ветра и даже если визуально кажется, что парус должен тормозить яхту, центр приложения сил находится ближе к носу парусника, и сила ветра обеспечивает поступательное движение.

Но это теория, а на практике все чуть по-другому. На самом деле парусная яхта не может идти против ветра - она движется под определенным углом к нему, так называемыми галсами.

Парусник движется за счет баланса сил. Паруса действуют как крылья. Большая часть производимой ими подъемной силы направлено в сторону, и лишь небольшое количество вперед. Впрочем, секрет в этом чудесном явление в так называемом «невидимом» парусе, который находится под днищем яхты. Это киль или на морском языке - шверт. Подъемная сила шверта также производит подъемную силу, которая тоже направлена в основном в бок. Киль противостоит крену и противоположной силе действующей на парус.

Кроме подъемной силы возникает еще и крен - вредное для движения вперед и опасное для экипажа судна явление. Но для того на яхте и существует команда, чтобы служить живым противовесом неумолимым физическим законам.

В современном паруснике и киль, и парус совместными усилиями направляют парусник вперед. Но как подтвердит любой начинающий моряк на практике все намного сложнее, чем в теории. Опытный моряк знает, что малейшие изменения изгиба паруса дают возможность получить больше подъемной силы и контролировать ее направление. Изменяя изгиб паруса, умелый моряк управляет размером и расположением области, производящей подъемную силу. С помощью глубокого изгиба направленного вперед можно создать большую зону давления, но если изгиб слишком велик или передняя кромка слишком крутая молекулы воздуха, обтекающие перестанут следовать его изгибу. Другими словами, если у предмета острые углы частицы потока не смогут совершить поворот - слишком силен импульс движения, это явление получило название «отделившийся поток». Результат этого эффекта - парус «заполощет», потеряв ветер.

А вот еще несколько практических советов использования ветровой энергии. Оптимальный курс выхода на ветер (гоночный бейдевинд). Моряки называют его «ход против ветра». Вымпельный ветер, имеющий скорость 17 узлов, ощутимо быстрее истинного ветра, создающего волновую систему. Разница их направлений составляет 12°. Курс к вымпельному ветру - 33°, к истинному ветру - 45°.

ДВИЖУЩАЯ СИЛА ВЕТРА

На сайте NASA опубликованы очень интересные материалы о разных факторах оказывающих влияние на формирование крылом самолета подъемной силы. Там же представлены интерактивные графические модели,которые демонстрируют, что подъемная сила может формироваться и симметричным крылом за счет отклонения потока.

Парус, находясь под углом к воздушному потоку, отклоняет его (рис. 1г). Идущий через «верхнюю», подветренную сторону паруса, воздушный поток проходит более длинный путь и, в соответствии с принципом неразрывности потока, движется быстрее, чем с наветренной, «нижней» стороны. Результат - давление с подветренной стороны паруса меньше, чем с наветренной стороны.

При движении курсом фордевинд, когда парус установлен перпендикулярно к направлению ветра, степень увеличения давление с наветренной стороны больше, чем степень понижения давления с подветренной стороны, другими словами ветер больше толкает яхту, чем тянет. По мере того, как яхта будет поворачивать острее к ветру, это соотношение будет меняться. Так, если ветер дует перпендикулярно курсу яхты, увеличение давления на парус с наветренной стороны оказывает меньшее влияние на скорость, чем снижение давления с подветренной стороны. Другими словами парус больше тянет яхту, чем толкает.

Движение яхты происходи благодаря тому, что ветер взаимодействует с парусом. Анализ этого взаимодействия приводит к неожиданным, для многих новичков, результатам. Оказывается, что максимальная скорость достигается, вовсе не когда ветер дует точно сзади, а пожелание «попутного ветра» несет в себе совершенно неожиданный смысл.

Как парус, так и киль, при взаимодействии с потоком, соответственно, воздуха или воды, создают подъемную силу, следовательно, для оптимизации их работы можно применить теорию крыла.

ДВИЖУЩАЯ СИЛА ВЕТРА

Воздушный поток обладает кинетической энергией и, взаимодействуя с парусами, способен двигать яхту. Работа, как паруса, так и крыла самолета, описывается законом Бернулли, согласно которому увеличение скорости потока приводит к уменьшению давления. При перемещении в воздушной среде, крыло разделяет поток. Часть его обходит крыло сверху, часть снизу. Крыло самолета спроектировано так, что воздушный поток, проходящий над верхней стороной крыла движется быстрее, чем поток, который проходит под нижней частью крыла. Результат - давление над крылом значительно ниже, чем под. Разница давления и есть подъемная сила крыла (рис. 1а). Благодаря сложной форме, крыло способно генерировать подъемную силу даже в том случае, когда рассекает поток, который движется параллельно плоскости крыла.

Парус может двигать яхту только в том случае, если находится под некоторым углом к потоку и отклоняет его. Дискуссионным остается вопрос о том, какая часть подъемной силы связана с эффектом Бернулли, а какая является результатом отклонения потока. Согласно классической теории крыла подъемная сила возникает исключительно в результате разницы скоростей потока над и под ассиметричным крылом. Вместе с тем хорошо известно, что и симметричное крыло способно создавать подъемную силу, если установлено под определенным углом к потоку (рис. 1б). В обоих случаях угол между линией соединяющей переднюю и заднюю точки крыла и направлением потока, называется углом атаки.

Подъемная сила увеличивается с увеличением угла атаки, однако эта зависимость работает только при небольших значениях этого угла. Как только угол атаки превышает некий критический уровень и происходит срыв потока, на верхней поверхности крыла образуются многочисленные вихри, а подъемная сила резко уменьшается (рис. 1в).

Яхтсмены знают, что фордевинд далеко не самый быстрый курс. Если ветер той же силы дует под углом 90 градусов к курсу, яхта движется намного быстрее. На курсе фордевинд сила, с которой ветер давит на парус, зависит от скорости яхты. С максимальной силой ветер давит на парус стоящей без движения яхты (рис. 2а). По мере увеличения скорости давление на парус падает и становится минимальный, когда яхта достигает максимальной скорости (рис. 2б). Максимальная скорость на курсе фордевинд всегда меньше скорости ветра. Причин тому, несколько: во-первых, трение, при любом движении некоторая часть энергии расходуется на преодоление различных сил препятствующих движению. Но главное то, что сила, с которой ветер давит на парус, пропорциональна квадрату скорости вымпельного ветра, а скорость вымпельного ветра на курсе фордевинд равна разнице скорости истинного ветра и скорости яхты.

Курсом галфвинд (под 90º к ветру) парусные яхты способны двигаются быстрее ветра. В рамках этой статьи мы не будем обсуждать особенности вымпельного ветра, отметим только, что на курсе галфвинд, сила, с которой ветер давит на паруса, в меньшей степени зависит от скорости яхты (рис. 2в).

Основным фактором, который препятствует увеличению скорости, является трение. Поэтому парусники с небольшим сопротивлением движению способны достигать скорости, намного превышающей скорость ветра, но не на курсе фордевинд. Например, буер, за счет того, что коньки обладают ничтожным сопротивлением скольжения, способен разогнаться до скорости 150 км/ч при скорости ветра 50 км/ч и даже меньше.

The Physics of Sailing Explained: An Introduction

ISBN 1574091700, 9781574091700


Не менее важное значение, чем сопротивление корпуса, имеет сила тяги, развиваемая парусами. Чтобы яснее представить себе работу парусов, познакомимся с основными понятиями теории паруса.

Мы уже говорили об основных силах, действующих на паруса яхты, идущей с попутным (курсом фордевинд) и со встречным ветром (курсом бейдевинд). Выяснили, что сила, действующая на паруса, может быть разложена на силу, которая вызывает крен и снос яхты под ветер,-силу дрейфа и силу тяги (см. рис. 2 и 3).

Теперь посмотрим, как определяется полная сила давления ветра на паруса я от чего зависят силы тяги и дрейфа.

Чтобы представить работу паруса на острых курсах, удобно вначале рассмотреть плоский парус (рис. 94), который испытывает давление ветра под определенным углом атаки. В этом случае за парусом образуются завихрения, на наветренной стороне его возникают силы давления, на подветренной - силы разрежения. Их результирующая R направлена примерно перпендикулярно к плоскости паруса. Для правильного понимания работы паруса ее удобно представить в виде равнодействующей двух составляющих сил: Х-направленной параллельно воздушному потоку (ветру) и Y-перпендикулярной ему.

Сила X, направленная параллельно воздушному потоку, называется силой лобового сопротивления; она создается, кроме паруса, еще и корпусом, такелажем, рангоутом и экипажем яхты.

Сила Y, направленная перпендикулярно воздушному потоку, называется в аэродинамике подъемной силой. Именно она на острых курсах создает тягу в направлении движения яхты.

Если при том же лобовом сопротивлении паруса Х (рис. 95) подъемная сила увеличивается, например, до величины Y1, то, как показано на рисунке, равнодействующая подъемной силы и лобового сопротивления изменится на R и соответственно сила тяги Т увеличится до Т1.

Подобное построение позволяет легко убедиться, что с увеличением лобового сопротивления Х (при той же подъемной силе) тяга Т уменьшается.

Таким образом, есть два пути увеличения силы тяги, а следовательно, и скорости хода на острых курсах: увеличение подъемной силы паруса и уменьшение лобового сопротивления паруса и яхты.

В современном парусном спорте подъемную силу паруса увеличивают придавая ему вогнутую форму с некоторой «пузатостью» (рис. 96): размер от мачты до наиболее глубокого места «пуза» обычно составляет 0,3-0,4 ширины паруса, а глубина «пуза»-около 6-10% ширины. Подъемная сила такого паруса на 20-25% больше, чем совершенно плоского почти при том же лобовом сопротивлении. Правда, яхта с плоскими парусами идет чуть круче к ветру. Однако с «пузатыми» парусами скорость продвижения в лавировку больше благодаря большей тяге.


Рис. 96. Профиль паруса

Заметим, что у пузатых парусов увеличивается не только тяга, но и сила дрейфа, а значит, крен и дрейф яхт с пузатыми парусами больше, чем со сравнительно плоскими. Поэтому «пузатость» паруса больше 6-7% при сильном ветре невыгодна, так как увеличение крена и дрейфа приводит к значительному повышению сопротивления корпуса и снижению эффективности работы парусов, которые «съедают» эффект увеличения тяги. При слабых ветрах лучше тянут паруса с «пузом» 9-10%, так как из-за малого общего давления ветра на парус крен невелик.

Любой парус при углах атаки больше 15-20°, то есть при курсах яхты 40-50° к ветру и больше, позволяет уменьшить подъемную силу и увеличить лобовое сопротивление, поскольку на подветренной стороне образуются значительные завихрения. А так как основную часть подъемной силы создает плавное, без завихрений, обтекание подветренной стороны паруса, то уничтожение этих завихрений должно дать большой эффект.

Уничтожают завихрения, образующиеся за гротом, постановкой стакселя (рис. 97). Поток воздуха, попадающий в щель между гротом и стакселем, увеличивает свою скорость (так называемый эффект сопла) и при правильной регулировке стакселя «слизывает» вихри с грота.


Рис. 97. Работа стакселя

Профиль мягкого паруса трудно сохранить неизменным при различных углах атаки. Раньше на швертботах ставили сквозные латы, проходящие через весь парус, - их делали более тонкими в пределах «пуза» и более толстыми к задней шкаторине, где парус гораздо площе. Сейчас сквозные латы ставят главным образом на буерах и катамаранах, где особенно важно сохранить профиль и жесткость паруса при малых углах атаки, когда обычный парус уже полощет по передней шкаторине.

Если источником подъемной силы является только парус, то лобовое сопротивление создает все, что оказывается в потоке воздуха, обтекающем яхту. Поэтому улучшение тяговых свойств паруса может быть достигнуто также и за счет снижения лобового сопротивления корпуса яхты, рангоута, такелажа и экипажа. Для этой цели используют различного рода обтекатели на рангоуте и такелаже.

Величина лобового сопротивления паруса зависит от его очертаний. По законам аэродинамики лобовое сопротивление крыла самолета тем меньше, чем оно уже и длиннее при той же площади. Вот почему парус (по существу то же крыло, но поставленное вертикально) стараются делать высоким и узким. Это позволяет также использовать верховой ветер.

Лобовое сопротивление паруса в очень большой степени зависит от состояния его передней кромки. Передние шкаторины всех парусов должны быть туго обтянуты, чтобы не допускать возможности вибраций.

Необходимо упомянуть еще об одном весьма важном обстоятельстве - так называемой центровке парусов.

Из механики известно, что всякая сила определяется ее величиной, направлением и точкой приложения. До сих пор мы говорили только о величине и направлении сил, приложенных к парусу. Как мы увидим дальше, знание точек приложения имеет большое значение для понимания работы парусов.

Давление ветра распределяется по поверхности паруса неравномерно (большее давление испытывает его передняя часть), однако для упрощения сравнительных расчетов считают, что оно распределяется равномерно. Для приближенных расчетов равнодействующую силу давления ветра на паруса полагают приложенной к одной точке; за нее принимают центр тяжести поверхности парусов, когда они помещены в диаметральной плоскости яхты. Эту точку называют центром парусности (ЦП).

Остановимся на самом простом графическом способе определения положения ЦП (рис. 98). Вычерчивают парусность яхты в нужном масштабе. Затем на пересечении медиан - линий, соединяющих вершины треугольника с серединами противоположных сторон, - находят центр каждого паруса. Получив таким образом на чертеже центры О и O1 двух треугольников, составляющих грот и стаксель, проводят через эти центры две параллельные линии ОА и O1Б и на них откладывают в противоположных направлениях в любом, но одинаковом масштабе столько линейных единиц, сколько квадратных метров в треугольнике; от центра грота откладывают площадь стакселя, а от центра стакселя - площадь грота. Концевые точки А и В соединяют прямой АБ. Другой прямой - O1O соединяют центры треугольников. На пересечении прямых А Б и O1O будет находиться общий центр.


Рис. 98. Графический способ нахождения центра парусности

Как мы уже говорили, силе дрейфа (будем считать ее приложенной в центре парусности) противодействует сила бокового сопротивления корпуса яхты. Силу бокового сопротивления считают приложенной в центре бокового сопротивления (ЦБС). Центром бокового сопротивления называется центр тяжести проекции подводной части яхты на диаметральную плоскость.

Центр бокового сопротивления можно найти, вырезав контур подводной части яхты из плотной бумаги и поместив эту модель на лезвие ножа. Когда модель уравновесится, легко нажимают на нее, затем поворачивают на 90° и снова уравновешивают. Пересечение этих линий дает нам центр бокового сопротивления.

Когда яхта идет без крена, ЦП должен лежать на одной вертикальной прямой с ЦБС (рис. 99). Если ЦП лежит впереди ЦБС (рис. 99, б), то сила дрейфа, смещенная вперед относительно силы бокового сопротивления, поворачивает нос судна под ветер - яхта уваливается. Если ЦП окажется позади ЦБС, яхта станет поворачиваться носом к ветру, или приводиться (рис. 99, в).


Рис. 99. Центровка яхты

И чрезмерное приведение к ветру, и в особенности уваливание (неправильная центровка) вредны для хода яхты, так как заставляют рулевого все время работать рулем, чтобы сохранить прямолинейность движения, а это увеличивает сопротивление корпуса и снижает скорость судна. Кроме того, неправильная центровка приводит к ухудшению управляемости, а в некоторых случаях - к ее полной потере.

Если мы отцентруем яхту так, как показано на рис. 99, а, то есть ЦП и ЦБС окажутся на одной вертикали, то судно будет очень сильно приводиться и управлять им станет весьма трудно. В чем дело? Здесь две главные причины. Во-первых, истинное расположение ЦП и ЦБС не совпадает с теоретическим (оба центра сдвинуты вперед, но неодинаково).

Во-вторых, и это главное, при крене сила тяги парусов и сила продольного сопротивления корпуса оказываются лежащими в разных вертикальных плоскостях (рис. 100), получается как бы рычаг, заставляющий яхту приводиться. Чем больше крен, тем больше склонность судна приводиться.

Чтобы ликвидировать такое приведение, ЦП помещают впереди ЦБС. Возникающий с креном момент силы тяги и продольного сопротивления, заставляющий яхту приводиться, компенсируется улавливающим моментом сил дрейфа и бокового сопротивления при переднем расположении ЦП. Для хорошей центровки приходится ЦП помещать впереди ЦБС на расстоянии, равном 10-18% длины яхты по ватерлинии. Чем менее остойчива яхта и чем выше поднят ЦП над ЦБС, тем больше в нос надо его передвигать.

Чтобы яхта имела хороший ход, ее надо отцентровать, то есть поставить ЦП и ЦБС в такое положение, при котором судно на курсе бейдевинд в слабый ветер было полностью уравновешено парусами, иными словами - было устойчиво на курсе с брошенным или закрепленным в ДП рулем (допускается легкая склонность к уваливанию при совсем слабом ветре), а при более сильном ветре имело склонность приводиться. Каждый рулевой должен уметь правильно центровать яхту. На большинстве яхт склонность приводиться увеличивается, если перебраны задние паруса и потравлены передние. Если же перебраны передние и перетравлены задние паруса, судно будет уваливаться. При увеличении «пузатости» грота, а также плохо стоящих парусах яхта склонна приводиться в большей степени.


Рис. 100. Влияние крена на приведение яхты к ветру